Spotlight

Nuvi bio-based animal-free leather alternative textiles

Nuvi are developing a range of animal-free leather alternatives from bio-based ingredients. Creta is an innovative material with a soft, supple surface texture made from Champagne chalk. Mamora is made from stone, available in undyed natural shades. Papilio is derived from butterfly pea flowers. The materials are produced on undyed linen-viscose or organic cotton backing materials. They can be coloured, embossed and perforated. They require treatment to be waterproof. Image Nuvi.

Spotlight

Sparxell cellulose-based biodegradable pigments

Sparxell produce non-toxic and biodegradable pigments from cellulose. Their technology exploits the highly reflective nature of plant-based cellulose. The colour comes from reflected light, so called structural colour, does not fade and can be used in the same contexts as conventional pigments, glitters, and sequins. The company does not use mica, titania or dye, ensuring their pigments have the least impact possible on the environment. Image Sparxell.

Spotlight

Syklo biocomposite made with recycled waste

Syklo produce an innovative biocomposite consisting of post consumer recycled (PCR) polypropylene (rPP) combined with recycled paper. The paper is shredded and micro fibrillated (MFC) to create a highly functional additive that provides significant mechanical benefits. It can be injection moulded and provides a bio-based recycled alternative to conventional PP materials in packaging and product applications. Image Syklo.

Spotlight

Bolton Metal low carbon steel produced by electrolysis

Boston Metal have developed an electrolytic process, molten oxide electrolysis (MOE), which enables the use of renewable energy sources in the production of steel. This direct approach eliminates several steps in the steelmaking process and does not require coke production, iron ore sintering and pelletising, blast furnace reduction or basic oxygen furnace refinement. Image BMW Group, who have invested in Boston Metal.

Spotlight

MettleWood compressed timber for engineering applications

InventWood have created a type of compressed wood they call MettleWood, suitable for demanding load-bearing applications. The process involves dismantling the lignin that bonds the cellulose fibres. This softens the wood and allows the cellulose fibres to be packed more tightly via evaporation of the water content. The wood is then swelled with water in a rapid process that “shocks” it to form a distinct partially open, wrinkled cell wall structure that provides space for compression as well as the ability to support high strain. The wood is compressed, finished and sealed to form the final profile. The process significantly increases strength and stiffness, which the company claims makes it more competitive with structural metals such as steel and aluminium alloy. Image InventWood.

Spotlight

Woodoo wood-based composite

Woodoo Augmented Wood uses a patented process to remove lignin from wood and replace it with a bio-based polymer (probably polyurethane). Their products include Slim, a see-through and touch sensitive veneer suitable for automotive and products; Flow which is designed as a flexible veneer-like substrate that the company suggests provides an alternative to leather; and Solid, an engineered wood composite for construction and furniture. Image Woodoo.

Spotlight

AMSilk animal-free protein-based textile fibre

AMSilk started producing Biosteel Fiber in 2015: a pioneering protein based fibre development that combined high performance properties with sustainability. Today AMSilk produce a range of fibres, from Biosteel to Ultrafine. It is made with biotechnology and is petroleum free. It is completely biodegradable in marine and aerobic conditions, leaving no plastic residue. It is converted into fabric using standard textile manufacturing equipment, turning man-made proteins into fibres for commercial textiles – footwear and garments, bags and wristbands, home textiles and even composites in automobiles. Image AMSilk.

Spotlight

CanvaLoop bio-based textiles from agricultural waste

CanvaLoop fibres for fashion and textiles are produced using agricultural waste from crops such as hemp, banana and pineapple production. The fibres are extracted and processed to make HempLoop (stalks from hemp grown for food and medicine), BanLoop (fibres from the plant stalk), PineLoop (fibres from discarded leaves), NettleLoop (wild Himalayan nettle) and FlaxLoop. Image CanvaLoop.

Spotlight

Arda New Grain leather alternative from plant based ingredients

Arda Biomaterials created New Grain, a new type of leather alternative that is currently in development, made from brewers’ spent grain (BSG). According to Arda Biomaterials, for every 100 ltr of beer, there are 20 kg of spent grain. The protein and fibre in the waste grain is processed into materials suitable for textiles that can be processed using similar techniques to leather. Image Arda Biomaterials.

Spotlight

Uncaged Innovations bio-based leather alternative

Uncaged Innovations are developing a leather alternative that is bio-based, animal-free and doesn’t require tanning like traditional leather. The process fuses structural proteins from grains with other bio-based elements to create fibril networks, replacing the animal collagen required for traditional leather. The company claims that the end product emits 95% less greenhouse gasses, 93% less water, and 72% less energy than traditional animal leather. Image Uncaged Innovations.

Spotlight

Morssinkhof – Rymoplast MOPET post consumer recycled polyethylene terephthalate (rPET) packaging for food contact

Morssinkhof – Rymoplast recycle polyethylene terephthalate (PET) packaging and convert it into MOPET rPET suitable for converting back into food contact packaging. MOPET-A, MOPET-Clear and MOPET-Green can be used at 100% for the production of clear, transparent food contact packaging: preforms, bottles and sheet. MOPET rPET is suitable for converting into other polyester products like fibre and injection mouldings. Image Morssinkhof – Rymoplast.

Spotlight

Ravapura post-consumer recycled (PCR) plastic compounds

Ravago Ravapura compounds include 50-70% recycled content low density polyethylene (rLDPE), 50-75% recycled content high density polyethylene (rHDPE), 33-50% recycled content polypropylene (rPP), 50-70% recycled content high impact polystyrene (rHIPS), 50-70% recycled content acrylonitrile butadiene styrene (rABS). They are suitable for packaging (non-food contact), electrical, products, furniture and appliances.

Spotlight

Made of Air carbon-negative additive for plastics

Made of Air convert biomass waste streams (such as forestry offcuts and secondary agricultural materials), which have photosynthesised CO2, into a form of biochar through controlled pyrolysis. Burning materials without oxygen means the carbon cannot form CO2 and instead forms biochar. Using their technology the biochar is converted into a functional carbon-rich filler for plastic biocomposites. Biochar has been produced for centuries and is increasingly being used as a fertiliser as well as a way of sequestering carbon in the soil, because the carbon is locked in and it remains stable for hundreds of years. Image Made of Air.

Spotlight

Flaxwood linoleum by Dzek

Linoleum tiles by Dzek in collaboration with designer Christien Meindertsma. It is a bio-based product that promotes a healthy indoor environment made with solidified linseed oil (from flax) and pine resin, filled with additives such as limestone, cork dust and wood flour. Image Dzek.

Spotlight

UBQ thermoplastic additive made from household waste

The feedstock for UBQ is household waste, which is largely comprised of organic materials – everything from food residues and mixed plastics to cardboard, paper, and even dirty diapers, that would have otherwise been sent to landfill or incineration. Metals and minerals, which have high recyclability, are removed and sent over to traditional recycling streams. UBQ’s waste conversion technology breaks down the organic matter into its basic particulate constructs—lignin, cellulose, fibres, and sugars—and then reassembles them into a matrix. Residual plastics present in the waste stream melt and get mixed into the matrix to create a homogeneous and consistent composite thermoplastic material. Image UBQ.

Spotlight

Bio-based and renewable plastic blends

Bio-Fed M•Vera bio-based plastics by Akro Plastics are suitable for injection moulding and are used for coffee capsules, cutlery, cosmetic packaging, toys, plant clips and so on. Renewable grades are based on starch, cellulose, polylactic acid (PLA) and polyhydroxyalkanoates (PHA). Fossil-based types include polybutylene adipate terephthalate (PBAT), polybutylene succinate (PBS) and polycaprolactone (PCL). The amount of renewable content is tailored to the application. Image Bio-Fed (a branch of Akro Plastics).

 

Spotlight

Renol lignin additive for plastics

Renol from Lignin Industries is a bio-based additive for thermoplastics such as acrylonitrile butadiene styrene (ABS), polypropylene (PP) and polyethylene (PE). The lignin used to make the additive is a by-product of the paper pulping industry and is typically burnt for energy generation. As an additive it can bring the carbon footprint down by replacing a proportion of the plastic in moulding and extrusion applications.

Spotlight

Ecor bio-based and recycled panels

Ecor convert agricultural and post-consumer waste (paper and card) into building materials, providing an alternative to engineered wood panels. Raw materials are processed into usable feedstock via a mechanical pulping process to achieve the desired properties for the pulp. The pulp is then dispersed in water and through controlled processing the lignin acts as a natural glue, like hardboard, binding the fibres together. Image Ecor.

Spotlight

NaNea biodegradable polyester fibre

OceanSafe have developed a 25-30% bio-based polyethylene terephthalate (PET), polyester, that is biodegradable in soil, marine and landfill. In marine water it biodegrades by >93% within 99 days, and is Cradle to Cradle Certified Gold. Alternatively, it can be recycled with regular polyester. It offers drop-in replacement for polyester as fill and fabric for fashion and interior applications. Image OceanSafe.

Spotlight

Bacterial cellulose textiles by Modern Synthesis

Modern Synthesis are developing a new class of materials using nanocellulose derived from bacterial fermentation. Komagataeibacter rhaeticus (K. rhaeticus), isolated from kombucha tea, is fed with sugar and in return creates bacterial cellulose (BC). It is produced as a film, which they combine with a natural textile to create a versatile range of non-woven materials. This unique approach to material design allows designers to precisely control the final look, feel and function of the textile, which can be further enhanced with finishing processes and naturally derived coatings. It is offers an animal free and plastic free alternative to leather, as well as other synthetic materials. Image Modern Synthesis.

Spotlight

Green Cast recycled acrylic sheet

Green Cast by Madreperla is 100% recycled and recyclable cast polymethyl methacrylate (PMMA), acrylic, sheet. The company’s environmental product declaration (EPD) gives a carbon footprint of 2.13 kgCO2/kg for this material. It is produced with 100% R-MMA, recycled methylmethacrylate monomer produced by Madreperla in Italy. It is available in transparent, as well as a wide range of colours and finishes. Image Madreperla.

Spotlight

Oryzite rice husk bio-filler for thermoplastics

Oryzite is a bio-filler produced from rice husk, a byproduct of food production. It is used to reduce the weight, cost and carbon footprint of plastics. Mixed with thermoplastics, such as polypropylene (PP), at up to 85%, it can have many benefits. Applications already include packaging, automotive parts, outdoor equipment, fashion accessories and product enclosures. However, it means the material is unlikely to be recycled end of life. Image Oryzite.

Spotlight

Virent bio-based hydrocarbons for bioplastics

The Virent Bioforming process converts carbohydrate rich feedstocks, such as sugar beet and sugar cane, into bio-based hydrocarbons that can be used as the building blocks for plastics. The bio-based chemistry uses catalytic conversation to provide a drop-in replacement for petroleum derived products in the production of plastic like polyester (PET), nylon (PA) and polyurethane (PUR). Applications range from packaging and moulded products to textiles and films. Image Virent.

Spotlight

Treekind plant-based leather by Biophilica

Biophilica Treekind is a flexible, leather-like material, made from urban plant waste, agricultural waste and forestry waste. It is made up of lignocellulosic feedstock (leaves, agricultural waste and forestry waste) with a natural binder. It is coated with a bio-based material to make it waterproof. Available in a range of natural colours, it may also be modified with plant pigments as well as non-toxic natural pigments. It is home compostable, recyclable and estimated to have a very low resource footprint. Image Biophilica.

Spotlight

Hemptex India hemp fibre and fabric

Hemptex India is a collaboration between CanvaLoop and Boheco (Bombay Hemp Company Private Limited). Their objective is to utilise agro-waste and make affordable & functional materials for sustainable fashion industry, while supporting local communities. The hemp fibre can be used for textiles for upholstery, apparel, accessories, shoes, furniture, performance wear and more. Image Definitely Curry.

Spotlight

Ottan recycled panels

Ottan converts green waste, such as byproducts from food production, into bio-based composite panels. The raw materials are ground, dried and compressed or cast into sheet products suitable for interior applications, such as furniture, lighting and products. Image Ottan.

Spotlight

Organoid natural fibre interior surfaces

Organoid surfaces are made with Austrian Alpine hay, harvested by hand on steep mountain slopes at an altitude of over 1,700 m. The hay is cleaned and cut before it is pressed, together with the colourful flower petals of marguerites, roses, cornflowers, heather, lavender and sun flowers, into the final product in several layers. The materials can be fixed to walls or furniture, for example. Image Organoid.

Spotlight

Magna Glaskeramik panels from recycled glass

Magna Glaskeramik panels are made with recycled glass – specifically industrial waste from the production of packaging and solar panels. The sheet materials, which are suitable for furniture and facades, for example, have a maximum dimension of 2800 x 1250 mm (up to 3500 x 1500 mm on request) and a standard thickness of 20 mm (15-40 mm available on request). Image Magna.

Spotlight

Upparel UPtex compressed recycled textile

Upparel UPtex is a nonwoven recycled textile, compressed into lightweight panels with heat. It is 100% recycled and fully recyclable end of life. It can be produced at an array of densities and thicknesses from 3-100 mm depending on the required application. This ranges from soft cushioning to rigid panels, such as for packaging, signage, homewares and acoustic insulation. Image Upparel.

Spotlight

Yakisugi charred wood

Yakisugi is a wood burning technique that has been used for centuries in Japan to extend the lifespan of wood in exterior applications. It was conceived before chemical treatments were available as a means of improving the longevity of wood by preventing decay, insect and mould infestation, while making planks more dimensionally stable and improving fire resistance. Typically used for siding and cladding on exteriors, the surface may be sealed and oiled for interior use, furniture and products.

Spotlight

UPM Formi EcoAce bio-based polypropylene (bio-PP)

UPM Formi EcoAce is a bio-based polypropylene (bio-PP) produced from bio-based naphtha, which is made from crude tall oil, a byproduct of the paper pulp process. The bio-composite version contains certified wood fibre (40-60%) or cellulose fibres (30-50%). Based almost entirely on renewable materials, it provides a drop-in replacement for fossil-based PP. It is recyclable and suitable for food contact applications.

Spotlight

Tencel Lyocell regenerated cellulose fibre

Tencel Lyocell by Lenzing is a type of regenerated cellulose fibre, derived from wood pulp. The conventional way of making this type of fibre consumes a lot of nasty chemicals. Lyocell takes a novel approach, using a different chemical system – N-methylmorpholine-N-oxide (a form of amine oxide known as NMMO) and water – which allows a virtually closed-loop production system. Lyocell is soft, absorbent and comfortable. It is often combined with a wide other textile fibres such as cotton, polyester, acrylic, wool, and silk to enhance the aesthetics and functionality of fabrics. Lyocell is certified biodegradable and compostable under industrial, home, soil and marine conditions. Image Tencel.

Spotlight

Reishi fine mycelium fabric

Reishi fine mycelium fabric by MycoWorks provides an alternative to animal leather and plastic-based textiles made using polyurethane (PU) or polyvinyl chloride (PVC). This luxury mycelium leather that looks and feels like fine animal leather but with much lower environmental impact. Image MycoWorks.

Spotlight

Phact biodegradable polyester by CJ Biomaterials

Phact is an amorphous polyhydroxyalkanoate (PHA), a biodegradable polyester produced by CJ Biomaterials, that is suitable for food contact applications including rigid and flexible packaging, food serviceware and other products. Amorphous PHA is relatively soft and rubbery, offering fundamentally different performance characteristics than crystalline or semi-crystalline forms of the biopolymer. It is a bio-based material that is certified for industrial and home compost, soil biodegradable and marine biodegradable. When combined with other bioplastics, such as polylactic acid (PLA), it enhances the biodegradability and compostability of products. Image CJ Biomaterials.

Spotlight

Medite Tricoya Extreme medium density fibreboard (MDF)

Medite Tricoya Extreme is a medium density fibreboard (MDF) by Roseburg with no added formaldehyde (NAF) in combination with acetylated wood fibre. This means the wood is treated with acetic anhydride, resulting in a harder, more dimensionally stable and insect resistant composite. As a result, it can be used in many applications where MDF was previously not suitable — it is guaranteed for 50 years outdoors and 25 years in ground. Image Roseburg.

Spotlight

Masonite hardboard

Masonite hardboard does not require additional adhesive – the lignin already present in the wood acts as a binder. The wet wood fibre mix is laid onto a mesh (similar to paper making) and some of the water pressed out before final high-pressure forming into a panel with heat.

Spotlight

Marmoleum linoleum by Forbo

Marmoleum linoleum by Forbo is a floor covering made with solidified linseed oil (from flax) and pine resin, reinforced with jute fibre, and filled with additives such as limestone, cork dust and wood flour. Marmoleum is made with renewable energy and materials for a sustainable and non-toxic product.

Spotlight

Malai coconut leather

Malai coconut leather is produced through bacterial fermentation of waste coconut water, a byproduct of coconut production. The bacterial cellulose that develops is enriched with natural fibres (banana, sisal, hemp), gums and resins to create a durable and flexible material which is converted into flat sheet or 3D parts. It is coloured with plant-based mordant-free dyes. Plant extracts like indigo, madder, cutch or marigold petals are used in order to achieve the colour. It is plastic-free, vegan and home compostable. Image Malai.

Spotlight

Kvadrat Really recycled textiles

Kvadrat Really materials are produced from recycled textiles collected from production waste, industrial laundries, the fashion industry and Kvadrat’s production and supply chain. The textiles are sorted by colour and re-milled in Denmark. Subsequently, the fibres are either blended into standard products or used to create a nonwoven base for Kvadrat Really materials, such as acoustic solutions and panels for furniture and interiors. The compressed panels are made with 9% bio-based polypropylene (bio-PP) and 17% bio-based polyethylene (bio-PE) binder. Image Kvadrat.

Spotlight

Hydro CIRCAL 100R and 75R aluminium alloys

Hydro CIRCAL 100R and 75R are recycled aluminium alloys made up of a minimum of 75% post-consumer scrap, such as window frames, doors and facades that have reached the end of their life. The balance being a combination of manufacturing waste and alloying elements to bring it in line with 6060 specification. Hydro CIRCAL 100R has a carbon footprint below 0.5 kgCO2e (according to Hydro internal estimates) and Hydro CIRCAL 75R has a carbon footprint of 1.9 kgCO2e on average according to the company’s EPD. Image Hydro.

Spotlight

Honext recycled paper construction panels

Honext recycled paper construction panels are produced from sludge waste from paper mills and post-consumer cardboard waste. The wet fibres are mixed with proprietary additives and pressed into a wet board, which is dried with heat to form the finished product. They provide an alternative to plywood, engineered wood panels and gypsum plasterboard. Image Honext.

Spotlight

GrapeSkin synthetic leather by Vegea

GrapeSkin synthetic leather by Vegea is made using by-products from wine making in Italy. The solid remains of grapes after pressing (known as pomace this include the skins, pulp, seeds and stems) are combined with vegetable oil and water-based polyurethane resin (PUR). It is coated onto cotton fabric or recycled polyester (rPET). The finished material comprises around 55% grape waste. Image MoEa.

Spotlight

Fruitleather

Fruitleather is produced from mango waste mixed with additives and finished with a waterproof coating. It is backed with organic cotton to provide strength. This vegan leather is suitable as an alternative to animal leather in many situations, including fashion, footwear and furniture applications. Image Fruitleather.

Spotlight

Ekoa flax textiles by Lingrove

Ekoa by Lingrove includes a range of flax fibre reinforced composites suitable for processing via standard composite manufacturing techniques such as wet lay-up, compression moulding, infusion and resin transfer moulding (RTM). Flax (linen) is a renewable and sustainable fibre that offers good vibration dampening and high strength to weight in composite applications. Image Lingrove.

Spotlight

Ecoboard bio-based panel

Ecoboard bio-based panels are made with reed or straw, a byproduct of food production, bonded with no added formaldehyde (NAF) adhesive. The company claims a negative carbon footprint of -0.96 kgCO2/kg if the amount of CO2 sequestered by the raw ingredients is taken into consideration (1.87 kgCO2/kg before production starts). They can be reused and recycled end of life. Image Ecoboard.

Spotlight

CRAiLAR hemp and flax fibre

CRAiLAR is an enzymatic process that softens bast fibers of hemp and flax in order to offer fibres similar to cotton. The Crailar process creates a softness to flax and hemp that could never be achieved before, creating products that are similar and even superior to cotton without the negative environmental effects that cotton farming can have. Image CRAiLAR.

Spotlight

Boliden recycled copper

Copper mining and smelting have a significant carbon footprint. The global average, according to the International Copper Association (ICA), is 2.3 kgCOe/kg. Boliden low-carbon copper, produced with renewable energy and recycled contents (up to 100%), has a reduced carbon footprint of 1.5 kgCO2e/kg. The primary raw material for Boliden’s recycled copper is used electronics. Image Boliden.

Spotlight

Bcomp flax fibre composite reinforcement

Bcomp have developed flax fibre reinforcement solutions, including powerRibs and ampliTex, suitable for processing via standard composite manufacturing techniques such as wet lay-up, compression moulding, infusion and resin transfer moulding (RTM). Flax (linen) is a renewable and sustainable fibre that offers good vibration dampening and high strength to weight in composite applications. Image Bcomp.

Spotlight

AppleSkin by Vegatex

AppleSkin by Vegatex is a synthetic leather produced with a mix of plant-based materials (by-product of apple processing for the beverage industry) mixed with water-based polyurethane resin (PUR) on a Tencel Lyocell, or recycled polyester (rPET), textile backing. Similar materials from Vegatex include LemonSkin made with by-products of apples and lemons from the beverage industry, and BarleySkin made from brewer’s spent grains. Image Vegatex.

Spotlight

Amorim expanded cork

Amorim expanded cork is used as a natural insulation in roofs, walls, floors, internal partitions and ceilings. It is made up of 100% cork, manufactured from scraps bound together with suberin (a waxy substance found in the cork cell walls). The raw materials are broken into small pieces and compressed in an autoclave (high-pressure heating chamber) at around 300 degC.

Spotlight

Agoprene seaweed foam

Agoprene seaweed foam is primarily made up of ingredients derived from Norwegian kelp, but also some minerals from crab shells and waste from the Norwegian paper industry. Under development as an alternative to petrochemical foams, it is 100% biodegradable and contains no harmful or petroleum-based chemicals. Image Agoprene.